
CS230: Deep Learning
Spring Quarter 2021
Stanford University

Midterm Examination
Suggested duration: 180 minutes

Problem Full Points Your Score

1 Multiple Choice 16

2 Short Answers 16

3 Convolutional Architectures 20

4 L1 regularization 13

5 Backpropagation with GANs 25

6 Numpy Coding 15

Total 105

The exam contains 16 pages including this cover page.

• If you wish to complete the midterm in LATEX, please download the project source’s
ZIP file here. (The Stanford Box link, just in case you face issues with the hyperlink:
https://stanford.box.com/s/9dhx0l4jaqmk3o1fk3egfuisbvbx69k1)

• This exam is open book, but collaboration with anyone else, either in person or online,
is strictly forbidden pursuant to The Stanford Honor Code.

• In all cases, and especially if you’re stuck or unsure of your answers, explain your
work, including showing your calculations and derivations! We’ll give partial
credit for good explanations of what you were trying to do.

Name:

SUNETID: @stanford.edu

The Stanford University Honor Code:
I attest that I have not given or received aid in this examination, and that I have done my
share and taken an active part in seeing to it that others as well as myself uphold the spirit
and letter of the Honor Code.

Signature:

1

CS230

Question 1 (Multiple Choice Questions, 16 points)

For each of the following questions, circle the letter of your choice. Each question has AT
LEAST one correct option unless explicitly mentioned. No explanation is required.

(a) (2 points) Suppose you have a CNN model for image classification, with multiple
Conv, Max pooling, ReLU activation layers, and a final Softmax output. Ignoring the
bias and numerical precision issues, which of the statements below are true?

(i) Multiplying the weights by a factor of 10 during inference does not affect the
prediction accuracy.

(ii) Multiplying the weights by a factor of 10 during training does not affect training
convergence.

(iii) Multiplying the input data by a factor of 10 during inference does not affect the
prediction accuracy.

(iv) Subtracting the input data by its mean per channel during inference does not
affect the prediction accuracy.

(b) (2 points) Select the methods that can mitigate gradient exploding

(i) Using ReLU activation instead of sigmoid.

(ii) Adding Batch Normalization layers.

(iii) Applying gradient clipping.

(iv) Using residual connection.

(c) (2 points) Select the statements that are true

(i) For a linear classifier, initializing all the weights and biases to zero will result in
all the elements in the final W matrix to be the same.

(ii) If we have a small dataset consisting of handwritten alphabets A-Z, and we wish
to train a handwriting recognition model, it would be a good idea to augment the
dataset by randomly flipping each image horizontally and vertically, given that
we know that each letter is equally represented in the original dataset.

(iii) If we have a trained softmax classifier that yields 100% accuracy on the dataset
and we change the weights matrix W to 3W, the classifier will maintain the same
accuracy and will have a smaller cross entropy loss without regularization.

(iv) If we are using the KNN-method with L1 distances to classify images, horizontally
flipping each training and test image will not lead to a change in the prediction
accuracy.

(d) (2 points) Select the statements that are true

(i) If the input to a ConvNet is a zero image (all zeros), the class probabilities will
be uniform.

2

CS230

(ii) You train a model and you observe that the validation set accuracy is significantly
lower than the train accuracy. Your friend suggests you to use batch normalization
and you agree it is a good idea. After using batch normalization, the new model
is likely to have a smaller gap between the train and validation accuracies.

(iii) For an n-dimensional vector y, the softmax of y will be the same as the softmax
of cy, where c is any real number since softmax normalises the predictions to yield
a probability distribution.

(iv) For data normalization, we typically compute the mean and standard deviation
across the entire dataset, before splitting it into train/val/test splits.

(e) (2 points) At test time, a Dropout layer (implemented as Inverse Dropout) with a
dropout probability p will:

(i) Multiply the input tensor by p.

(ii) Drop neurons from the input with probability p.

(iii) Divide the input tensor by p.

(iv) None of the above.

(f) (2 points) Which of the following is/are true about the momentum update rule?

(i) It has no hyperparameters.

(ii) It better avoids local minima by keeping running gradient statistics.

(iii) If the network has n parameters, momentum requires that we keep track of O(n)
extra parameters

(iv) None of the above

(g) (2 points) Which of the following are true for early stopping during training:

(i) It may reduce the necessity to tune the hyperparameter for number of training
epochs

(ii) It increases model variance

(iii) When accuracy reaches a trough on the validation set, we invoke early stopping

(iv) It may dramatically speed up training at the cost of learning less optimal param-
eters

(h) (2 points) Which of the following are true for backpropagation:

(i) If the neural network has O(n) parameters, backpropagation is an O(n2) operation

(ii) Backpropagation works only if a computational graph has no directed cyclic paths

(iii) We update the β parameter in Adam using backpropagation

(iv) We update the γ parameter in Batch Normalization using backpropagation

3

CS230

Question 2 (Short Answers, 16 points)

The questions in this section can be answered in 2-4 sentences. Please be concise in your
responses.

(a) (2 points) You begin training a Neural Network, but the loss evolves to be completely
flat. List two possible reasons for this.

(b) (2 points) Your CS 230 project is in collaboration with the California PD, and they
require you to identify criminals, given their data. Since being imprisoned is a very
severe punishment, it is very important for your deep learning system to not incorrectly
identify the criminals, and simultaneously ensure that your city is as safe as possible.
What evaluation metric would you choose and why?

(c) (2 points) Although Pooling layers certainly cause a loss of information between
Convolutional layers, why would we add Pooling layers to our network?

(d) (2 points) What does it mean for your model to have high variance? Give one possible
way reduce variance in your model.

(e) (2 points) List one advantage and one disadvantage of having a small batch size for
training.

(f) (2 points) Why softmax function is often used for classification problems?

(g) (2 points) L1 regularization gives us more explainable models as they are sparse, so
we can discard most covariates as having no effect on the outcome variable; hence we
should prefer L1 regularization to L2 even at the cost of performance. Do you agree
with this statement? If yes, give an example. If not, why not?

(h) (2 points) In a true/false classification problem, if you had class imbalance (many
more false class labels) during training and you downsampled the false class, how would
you account for this during testing?

4

CS230

Question 3 (Convolutional Architectures, 20 points)

Say you have an input image whose shape is 128 × 128 × 3. You are deciding on the
hyperparameters for a Convolutional Neural Network; in particular, you are in the process
of determining the settings for the first Convolutional layer. Compute the output activation
volume dimensions and number of parameters of each of the possible settings of the first
Convolutional layer, given the input has the shape described above. You can write the
activation shapes in the format (H,W,C) where H,W,C are the height, width, and channel
dimensions, respectively.

i. (2 points) The first Convolutional layer has a stride of 1, a filter size of 3, input
padding of 0, and 64 filters.

ii. (2 points) The first Convolutional layer has a stride of 1, a filter size of 5, input
padding of 2, and 16 filters.

iii. (2 points) The first Convolutional layer has a stride of 2, a filter size of 2, input
padding of 0, and 32 filters.

5

CS230

Now that you have determined the output shapes and number of parameters for these con-
figurations, you are going to create a deeper CNN. Say you create a CNN made of three
identical modules, each of which consists of: a Convolutional layer, a Max-Pooling layer,
and a ReLU layer. All Pooling layers will have a stride of 2 and a width/height of 2. For
example, say we define the Convolutional layer to have stride 1, filter size 1, input padding
of 0, and 8 filters. Then the module architecture would be:

• 1× 1× 8 Conv with stride 1 and 0 padding

• 2× 2 Max-Pool with stride 2

• ReLU

Three such modules make up the entire network. Given the following Convolutional hy-
perparameters, compute the output activation volume dimensions after passing the input
through the entire network, as well as the number of parameters in the entire network

iv. (4 points) The Conv layers have a stride of 1, a filter size of 3, input padding of 0,
and 64 filters.

v. (4 points) The Conv layers have a stride of 1, a filter size of 5, input padding of 2,
and 16 filters.

vi. (4 points) The Conv layers have a stride of 2, a filter size of 2, input padding of 0,
and 32 filters.

vii. (2 points) Say you want to solve a 10-class classification problem given the input (e.g.
the input represents a digit, and you want to predict which digit it is). To do so, you
decide to add a Fully-Connected layer after your three Conv-Pool-ReLU modules. The
input to the FC layer is the output of the last module, completely flattened. Which of

6

CS230

the three previous architectures (given in parts iv., v., and vi.) will allow for the FC
layer to have the smallest number of parameters? Give the number of parameters for
said layer.

7

CS230

Question 4 (L1 regularization (Lasso), 13 points)

L1 regularization on the model parameter w is defined as

||w||1 =
∑
i

|wi|

In this question, you are asked to apply L1 regularization to a neural network model, of
which the original objective function is defined as J(w;X,y). The regularized objective
function after adding the L1 normalization term becomes:

J̃(w;X,y) = J(w;X,y) + α||w||1

i. (3 points) Write down the corresponding gradient of the regularized objective function
J̃ . Hint: your answer should include an element-wise sign function sign(x).

ii. (6 points) It could be difficult to get a clean algebraic solution to the previous gra-
dient expression. To study how this L1 normalization term could affect the converged
weights, we make following simplifications:

• We apply Taylor expansion to J(w;X,y) and discard high-order terms. Specifi-
cally, we approximate the original objective function J with

Ĵ(w;X,y) = J(w∗) +
1

2
(w −w∗)TH(w −w∗)

, where w∗ is the optimal parameter for the objective function without the regu-
larization term and H is the Hessian matrix.

• We assume the Hessian is diagonal, H = diag([H1,1, ..., Hn,n]), where eachHi,i > 0.
This assumes that there is no correlation between the input features.

8

CS230

Now, write down an analytical solution for each element wi of w when the gradient
equals to zero. Your answer should be expressed with weights w∗i (w∗ is the the
optimal weights for an unregularized object function), Hesian matrix elements Hi,i,
and coefficient α. Hint: the gradient of |x| at x = 0 can take any value between
[−1, 1].

iii. (4 points) Given your answer to previous question, explain how L1 regularization will
affect the weights differently from L2 regularization. You must discuss large weights
and small weights separately.

9

CS230

Question 5 (Backpropagation with GANs)

In this question, we will workout backpropagation with Generative Adversarial Networks
(GANs).

Recall that a GAN consists of a Generator and a Discriminator playing a game. The Gener-
ator takes as input a random sample from some noise distribution (e.g., Gaussian), and its
goal is to produce something from a target distribution (which we observe via samples from
this distribution). The Discriminator takes as input a batch consisting of a mix of samples
from the true dataset and the Generator’s output, and its goal is to correctly classify whether
its input comes from the true dataset or the Generator.

Definitions:

• X1, ..., Xn is a minibatch of n samples from the target data generating distribution
For this question, we suppose that each X i is a k dimensional vector. For example, we
might be interested in generating a synthetic dataset of customer feature vectors in a
credit scoring application

• Z1, ..., Zn is a minibatch of n samples from some predetermined noise distribution Note
that in general these minibatch sizes may be different.

• The generator g(.; θg) : Z → X is a neural network

• The discriminator d(.; θd) : X → (0, 1) is a neural network

The log likelihood of the output produced by the discriminator is:

L(θd, θg) =
1

n

n∑
i=1

logD(X i) + log(1−D(G(Zi)))

The training of such a GAN system proceeds as follows; given the generator’s parameters,
the discriminator is optimized to maximize the above likelihood. Then, given the discrimina-
tor’s parameters, the generator is optimized to minimize the above likelihood. This process
is iteratively repeated. Once training completes, we only require the generator to generate
samples from our distribution of interest; we sample a point from our noise distribution and
map it to a sample using our generator.

The Discriminator (The generator architecture is defined analogously)

• Consider the discriminator to be a network with layers indexed by 1, 2, .., Ld for a total
of Ld layers.

• Let the discriminator’s weight matrix for layer l be W l
d; lets assume there are no biases

for simplicity

• Let the activations produced by a layer l be given by Ald, and the pre activation values
by zld. Write down

10

CS230

• Let gld(.) be the activation function at layer l

i. The goal of the discriminator is to maximize the above likelihood function. Write down
∇θdL(X; θd, θg) in terms of ∇θdD(.) (3 points)

ii. Write down
∂L(θd, θg)

∂zLd
d

taking help from your answer in the previous subpart. Remember that the activation
function in the last layer of the discriminator is a sigmoid function as the output of
the discriminator is a probability. (4 points)

iii. Write down recursively
∂L(θd, θg)

∂zld

in terms of ∂L(θd,θg)

∂zl+1
d

Hint: Your answer will contain wl+1
d , g′ld (.) and zld (5 points)

11

CS230

iv. Let the output of the generator be g(zi; θg)
Write down

∂L(θd, θg)

∂g(zi; θg)

in terms of w1
d, and ∂L(θd,θg)

∂z1d
(5 points) Hint: The variable over which we calculate

gradient here is similar to z0d, except it is supplied post activation Note: This is also
how we take gradients wrt inputs of a network; this is useful/required in some tasks.
(3 points)

v. Now we move to the generator. The goal of the generator is to minimize the above
likelihood function. Write down∇θgL(θd, θg) in terms of∇θgg(.) and in terms of ∂L(θd,θg)

∂g(zi;θg)

calculated in the previous part (5 points)

vi. Write down a simple gradient based update rule (don’t use RMSprop or Momentum,
and assume no regularization) for θt+1

d in terms of ∇θdL(θd, θg), fixed learning rate α
and the current parameters θtd (1 point)

12

CS230

vii. Write down a simple gradient based update rule (don’t use RMSprop or Momentum,
and assume no regularization) for θt+1

g in terms of ∇θgL(θd, θg), fixed learning rate α
and the current parameters θtd (1 point)

viii. Now assume you decide to (lazily) use a simplified version of the objective, which we
call “Likelihood Version”, just to test how it works. Define the following alternative
likelihood function.

L′(θd, θg) =
1

n

n∑
i=1

D(X i) +D(G(Zi)))

Note that this likelihood is high when the original likelihood is high, and low otherwise,
in general, so it is possible that it works. Write down ∇θdL

′(θd, θg) in terms of ∇θdD(.)
(3 points) It turns out this new Likelihood (along with gradient clipping) ends up

minimizing the earth mover or Wasserstein distance between the target distribution
and your generated samples, and the GAN optimized as such is called a WGAN.
WGANs have been shown to work better than standard GANs in many cases, and are
often preferred to GANs

13

CS230

Question 6 (Numpy Coding , 10 points + 5 points extra credit)

Human visual attention allows us to focus on a certain region with “high resolution” while
perceiving the surrounding image in “low resolution”, and then adjust the focal point or do
the inference accordingly. Given a small patch of an image, pixels in the rest provide clues
what should be displayed there.

Figure 1: The image on the right is depicting attention computed over particular regions of
an image, spotting different features

Attention in deep learning can be broadly interpreted as a kernel of importance weights.
Mathematically, it can be described as mapping a query and a set of key-value pairs to an
output. The output is computed as a weighted sum of the values, where the weight assigned
to each value is computed by a compatibility function of the query with the corresponding
key.
The Stanford Vision Lab has asked you to implement attention on an image dataset, and
they also provide you with the steps required to compute the attention values.
You are given a NumPy ndarray: an image array ∈ RH,W,iC , and your output is another
NumPy ndarray ∈ RH,W,oC . Here,

• iC: Number of input channels.

• H, W : Height and width of an image frame.

• oC: Number of output channels.

Preprocessing. First, we want our model to be scale invariant; you can achieve it using
matrix normalization. In this case, you will convert each image frame to its unit normalized
version, using the Frobenius norm of each channel individually. For your convenience, the
Frobenius norm for a matrix A ∈ Rm×n (‖A‖F) has been defined below.

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

| aij |2

14

CS230

Computing Attention Scores. Now, we compute attention scores for each pixel in the
image following figure 2. At each index (i, j), i ∈ H, j ∈ W , we consider the query array qij
as pixel array of the image across all channels (∈ RiC)and compute the corresponding score,
yij using the following equation. Hint : You might want to look at np.squeeze

yij =

(3,3)∑
a,b=(1,1)

softmax(qT
ijka,b)� va,b

This process is very similar to convolutions, but instead of convolving with a filter/kernel,
we convolve the image with the key kernel, compute the softmax output, and compute the
final score by multiplying and summing with value kernel. For simplicity, assume that the
model parameters k and v of the given shapes are provided.
In this problem, for each output channel, we take key kernel k of size 3× 3× iC and value
kernel v of size 3× 3× 1, and ka,b ∈ RiC .

Figure 2: Computation of attention scores for a single pixel across input channels

Given the image, and kernels k and v, you must use NumPy operations to compute the
attention scores. Note that comparing attention score calculation to convolution operations,
the stride size is 1, and there is no padding.

1. What would be the total number of trainable parameters in your self-attention model,
given that the output array Y ∈ RH,W,oC .

2. Following the above pseudocode and carefully following the dimensional rules, write
down an attention model implemented using Python for-loops. We will be awarding
extra credit if you could figure out how to replace the loops with NumPy subroutines.
We have also provided a snippet of the code as a starter.

15

CS230

END OF PAPER

16

