CS230: Lecture 4
Attacking Networks with Adversarial Examples

Generative Adversarial Networks

Kian Katanforoosh

Kian Katanforoosh

Today’s outline

|. Attacking NNs with Adversarial Examples

[|. Generative Adversarial Networks

Kian Katanforoosh

|. Adversarial examples

Szegedy et al. (2013): several machine learning models, including state-of-the-art neural
networks, are vulnerable to adversarial examples.

A. Attacking a network with adversarial examples

B. Defenses against adversarial examples

[Szegedy et al. (2013): Intriguing properties of neural networks] _
[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

What are examples of Adversarial attacks?

Kian Katanforoosh

l. A. Attacking a network with adversarial examples

Goal: Given a network pretrained on ImageNet, find an input image that will be classified

as an iguana.

1. Rephrasing what we want:

Find x such that: y(x)=y

iguana

(0

Neural network
(pretrained on
ImageNet)

0.02

> 0.07

0.81

0.02) -

2. Defining the loss function

Y,

1
2

L(y,y)=

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples]

J;(W’b’x) o yiguana

(0.04) “car
0.85 | “iguana

“tomato”
l(lbiike’”

“‘m’l

lcrrab’”

3. Optimize the image

2

X

2

Network

After many iterations l

[

| 15 L(y,Y)
oL dL
— X=X—0—
ox 0Xx

Kian Katanforoosh

l. A. Attacking a network with adversarial examples

Question: Will the forged image x look like an iguana?

=

Y

D

¢ i
)
:;‘{a‘

e T

s P AR
St RN R

Yt

L
.

L
3

\
A
3

e
i

o

75 632><32><3 - 107400 Sp_ace of possible Space of in_1ages classified
o input images as iguanas

Space of real images

Kian Katanforoosh

l. A. Attacking a network with adversarial examples

Goal: Given a network pretrained on ImageNet, find an input image displaying a cat but
classified as an iguana.

(0.04) “car
:0.85 “iguana
Neural network 002 | “omate
> (pretrained on > 0.07 | “bie
ImageNet) 081 e
10.02) “crab”
1. Rephrasing what we want: (0 2. Defining the loss function 3. Optimize the image
1
" .2 _ _ : . 1 . 2 l W | Network A
Find x such that: 79=r.. =0 L(3:3)= 5|0V 5.X) = Vg, L e | D)
| : [N 1
0, +1Hx_xcat) After many iterations l \/
And: x=x_
= oL oL
— X=X—0—
0x ox

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

l. A. Attacking a network with adversarial examples

92% Cat 94% lguana

Kian Katanforoosh

l. A. Attacking a network with adversarial examples

75 632><32><3 - 107400 Sp_ace 01_‘ possible Space of in.1ages classified
- input images * as iguanas

—

Space of real images

Space of images that look real to humans

Kian Katanforoosh

. 4

.
4

Naversarial Examples In The Physical World
Nurakin A., GoodifeloW. lleBeRSiCSosmOdiE

[Alexey Kurakin, lan J. Goodfellow, Samy Bengio (2017): Adversarial examples in the physical world] Kian Katanforoosh

l. C. Why are neural networks vulnerable to adversarial examples?

Get your pencils ready.

Do neural networks actually understand the data?

[Yuan et al. (2017): Adversarial Examples: Attacks and Defenses for Deep Learning] Kian Katanforoosh

l. C. Why are neural networks vulnerable to adversarial examples?

Let's design a method to generate Adversarial Examples

After successful training, we get:

w=(13,-1,2273)"
b =0

<>

(1)
X \
’ ror x=(1,—12.03,—2)7
(l) 7 We get: ¥y = 0.018
ne Can we modify x slightly such that it affects y drastically?

=x+ew=x+02w=(1.2,-04,1.8,043.4, —1.4)"

&(x*) = owTx®) = owlx+e|w|*)=0..83
Kian Katanforoosh

l. C. Why are neural networks vulnerable to adversarial examples?

Fast Gradient Sign Method:

dJ(W,X,Y))

x* = x4+ esign(o

Kian Katanforoosh

Table 3: Taxonomy of adversarial attacks covered in this paper.

Adversarial Attack(s)

Transparency Specificity

Remarks

L-BFGS [31 W T, NT Early attack on neural networks using constrained optimization method
FGSM [32] W T, NT A fast single-step gradient ascent attack
BIM [45, 77 W T, NT [terative variants of FGSM
ILLCM [45, 77] W T Extension of BIM to attack models with many output classes
R+FGSM [47] W T, NT FGSM [32] with random initialization, can circumvent gradient masking
AMDR 78] W T, NT Similar to L-BFGS but targetting feature space
DeepFool [79] U NT Efficient method to find minimal perturbation that causes misclassification
JSMA [80] W T, NT Some variants of JSMA can fool defensive distillation
SBA [41] B T, NT Can fool defensive distillation [43|, MagNet [81|, gradient masking defenses
Hot/Cold [82] \\Y% T Simultaneously moving towards “hot” class and away from “cold” class
C&W [44] W T, NT Can fool defensive distillation [43], MagNet |81] and various detector networks
UAP |[83] W NT Generate input-agnostic perturbations
DFUAP [84] W NT Generate input-agnostic perturbations without knowing any inputs
VAE Attacks 85| A\ T, NT Can fool VAE [86| and potentially defenses relying on generative models
ATN (87 AW T, NT Generate adversarial examples using neural networks
DAG |88 W T, NT Can fool semantic segmentation & object detection Models
ZOO (89 B T, NT Can fool defensive distillation [43] and non-differentiable models
OPA (90! B T, NT Uses genetic algorithm, can generate adversary by just modifying one pixel
Houdini [91] W, B T, NT Method for attacking models directly through its non-differentiable metric
MI-FGSM [92] W T, NT BIM + momentum, faster to converge and better transferability
AdvGAN [93] W T, NT Generate adversarial examples using GAN [63]
Boundary Attack [94] B T, NT Can fool defensive distillation [43] and non-differentiable models
NAA [60] B N Can generate adversaries for non-sensory inputs such as text
stAdv [95] W T, NT Unique perceptual similarity objective
EOT [96] W T, NT Good for creating physical adversaries and fooling randomization defenses
BPDA [55] \\Y% T, NT Can fool various gradient masking defenses
SPSA [97] B T, NT Can fool various gradient masking defenses
DDN |98] \\Y% T, NT Better convergence compared to other constrained optimization methods
CAMOU (99| B N Attack in simulation using SBA [41], can be used to attack detection model
W: Whitebox
B: Blackbox
T: Targeted

NT: Non-targeted

[Wiyatno et al. (2019): Adversarial Examples in Modern Machine Learning: A Review]

Kian Katanforoosh

l. B. Defenses against adversarial examples

Knowledge of the attacker:

e \White-box
e Black-box

Examples of defenses (exploratory)

* Create a SafetyNet

* [rain on correctly labelled adversarial examples

» Adversarial training L = L(W,b,x,y)+AL(W,b,x_,,»)

[Lu et al. (2017): SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] .
[Harini Kannan et al. (2018): Adversarial Logit Pairing] K|an KatanfOrOOSh

Table 5: Taxonomy of adversarial defenses covered in this paper.

Adversarial Defense(s)

Goal

Remarks

Adversarial Training [32]

Training on adversarial examples

Ensemble Adversarial Training [47]

More robust to blackbox attacks compared to standard adversarial training

DCN [180] Early defense against adversarial attacks with gradient regularization
Defensive Distillation [43] Circumventable by C&W [44], SBA [41], and variant of JSMA [181]
MagNet [81] , D Combination of R & D, circumventable by C&W [44] and SBA [41]
Random Resizing & Padding [51] Circumventable by EOT variant (Expectation Over Randomness) [55]
SAP [50] Circumventable by EOT variant (Expectation Over Randomness) [55]
TVM & Quilting [54] Circumventable by combination of BPDA [55] and EOT [96]

TE [48] Circumventable by BPDA [55

PixelDefend [53] , D Circumventable by BPDA [55] and SPSA [97]

Defense-GAN [52] Circumventable by BPDA [55!

PGD Adversarial Training [145] Training only on PGD adversaries

WRM [182] Adversarial training with robustness certificate

HGD [159] Circumventable by SPSA [97]

ALP [183] Circumventable by PGD [145] with many iterations [184]

FN [185] Denoising on hidden representations using autoencoders

FDB [186] Denoising on hidden representations using differentiable denoising operation
ABS [187] Model distribution of the inputs for each class using VAE |86]

WSNNS [188| Replace input with its nearest neighbor from a large database of images
ME-Net [189] Defense using matrix estimation algorithms

H&G’s Methods [190, 191]

Circumventable by modified C&W [44]

Detector Networks [192, 193, 194, 195]

Circumventable by C&W |44] and SBA [41]

KDE & BUE [196]

Circumventable by modified C&W [44]

Feature Squeezing [197]

Detection by comparing the predictions between preprocessed and original inputs

RCE [198]

wliw/iw/iw/jw]i-vi§-ci§-vi§-v]}-vi}-vi§-vi§-v]=v]}-vl-v]§=v]§-v]§=vlR=sl-v]R-vl§-v] p=r]g=>

Defense using reverse crossentropy loss

R: Robustness
D: Detection

[Wiyatno et al. (2019): Adversarial Examples in Modern Machine Learning: A Review]

Kian Katanforoosh

ll. Generative Adversarial Networks (GANS)

A. Motivation

B. G/D Game

C. Training GANS

D. Nice results

E. Interms of code

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

II.LA - Motivation

Motivation:

- Data synthesis

- Compress and reconstruct data.

- FInd a mapping between spaces.
Image In-painting

Approach: Collect a lot of data, use it to train a model to generate similar data from
scratch.

Intuition: number of parameters of the model << amount of data

Kian Katanforoosh

II.LA - Motivation

Probability distributions:

“real data distribution”

Image space

“generated distribution”

Image space

[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks]

Goal

Matching distributions

Image space

Kian Katanforoosh

ll. Generative Adversarial Networks (GANS)

A. Motivation

B. G/D Game

C. Training GANS

D. Nice results

E. Interms of code

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

II.B - G/D Game

100-a (64,64,3)
random code generated image

(0.47)

Generator “G”
(Neural Network)

0.19)
Z

How can we train G to generate images from the true data
distributions?

[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] K | a n Kata n fo rO O S h

II.B - G/D Game

100-d (64,64,3)
random code generated image
(0.47) Run Gradient Descent simultaneously on two
minibatches (true data / generated data
: enerator “G”
E (Neural Network)
0.19)
Gradients Binary classification
)
Discriminator “D” y=01if x=G(z)
(Neural Network))

=1 otherwise

Probability distributions

Real images
(database)

Image space

Kian Katanforoosh

100-d
random code
(0.47)
: Generator “G”
E (Neural Network)
\0.19)

End goal: G is outputting
images that are
indistinguishable from rea
images for D

Real images
(database)

II.B - G/D Game

(64,64,3)
generated image

Discriminator “D”
(Neural Network)

Gradients

Binary classification

-

0 if
1 oth

x=G(z)
erwise

Probability distribution

Image space

lan Katanforoosh

II.B - G/D Game

-

Training procedure, we want to minimize: | abels: < Vrear is always |

kygen S a‘WayS 0
e [The cost of the discriminator

1 Mol 1 mgen . .
(D) _ (Z) (7) (7) (7)
= e og(D(x")=——3 (1= 37,)Jog(1- D(G(z"")))
. real =1) gen =1
cross-entropy 1: Cross-entropy 2:Y
"D should correctly label real data as 17 "D should correctly label generated data as 0”
* [he cost of the generator
(G) o _ 1 & (i
— - ! “G should try to fool D: by minimizing th
J T _J Z IOg(l D(G(Z))) oppS)ogiLtJe ofrzvhoato[g)is try?;]gr;nlgmlifwlirr]r%ze?
gen 1= |

Kian Katanforoosh

ll. Generative Adversarial Networks (GANS)

A. Motivation

B. G/D Game

C. Training GANs

D. Nice results

E. Interms of code

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

Saturating cost

min

1 Moen - Z(i)
for the generator: | Zoe1=DGED)

gen 1=

II.C - Training GANs

— max

LS log(D(G(z"))

gen 1=

< min

Non-saturating cost

-20
0

[lan Goodfellow (2014): NIPS Tutorial: GANs]

J6) —

J(G) _

Saturating cost

gen =1

gen =1

LS log(D(G(z"Y)

Zlog<D<G<z<’>>>>

Zloga D(G(z")))

Kian Katanforoosh

Kian Katanforoosh

II.C - Training GANs

Note that: min —Zlog(l D(G(z""))) | & max —Zlog(D(G(z(’)))) & min Zlog(D(G(z(’))))

gen 1= 1 gen 1= 1 gen 1= 1

New training procedure, we want to minimize:

M, oal gen
(D) _ (7) (7) (7) (7)
JP =350 Jog(DE)-——Y (1- ¥) dog(1- D(G(z")))
- real =1 y gen =1
cross-entropy 1: Cross-entropy 2:
‘D should correctly label real data as 1° "D should correctly label generated data as 0”
gen
J' = log(D(G(z")) - nimizing s
— g Z G should try to fool D: by minimizing this
gen =1

Kian Katanforoosh

Table 1: Generator and discriminator loss functions. The main difference whether the discriminator outputs a probability (MM GAN, NS
GAN, DRAGAN) or its output is unbounded (WGAN, WGAN GP, LS GAN, BEGAN), whether the gradient penalty 1s present (WGAN GP,
DRAGAN) and where 1s i1t evaluated. We chose those models based on their popularity.

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MM GAN L™ = —Egnp,[log(D(z))] — Egnp, [log(1 — D(&))] L = Eanp,[log(l — D(2))]
NS GAN Ly = —Egznp,log(D(z))] — Eznp, [log(l — D(2))] L5 = —Eznp, [log(D(2))]
WGAN L3N = —Eunpy [D(@)] + Egnp, [D(2)] L6 = —Eanp, [D(2)]

WGAN GP Ly = LY 4 AEzp, [(|[VD(az + (1 — a)|]2 — 1)%] LI = —Ezp, [D(2)]

LS GAN L5 = —Eyp, [(D(x) — 1)%] + Egrp, [D ()] LG = —Eanp, [(D(2 — 1)°]
DRAGAN LMW = LOM L AE; p a0, [([IVD(Z)]2 — 1)7] L& = Egnp, [log(l — D(2))]
BEGAN L3N =Egrpyll|lr — AE(2)|]1] — ktEs~p, [||Z — AE(2)||1] L& = Ez~p, [||2 — AE(Z)]]1]

|Lucic, Kurach et al. (2018): Are GANs Created Equal? A Large-Scale Study]

Kian Katanforoosh

II.C - Training GANs

Simultaneously training G/D?

®
Non-saturating cost
0] <= |
J @ =—— log(D(G(z")))
for num_iterations: mg i=1
for k iterations: Saturating cost
update D "o |
A izﬂdlc)g(l — D(G(z'")))
update G mg i=1
-20
’ D(G(2)) |

[lan Goodfellow (2014): NIPS Tutorial: GANSs] Kian Katanforoosh

II.C - Training GANs

Recap: GANSs' training tips

 Modification of the cost function

’ D(G(z2)) 1

o Keep D up-to-date with respect to G (k update for D / 1 update for G)

And a lot more, GANs are hard to train!

[Soumith et al. (2016): GanHacks]

[Lucic, Kurach et al. (2018): Are GANs Created Equal? A Large-Scale Study] Kian Katanforoosh

ll. Generative Adversarial Networks (GANS)

A. Motivation

B. G/D Game

C. Training GANS

D. Nice results

E. Interms of code

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

Il.LE - Nice results

Operation on codes

(64,64,3)
Code 1 generated image
(0.12)
> Generator “G”
(Neural Network)
\ 0.92
Code 2 et

generated image

Code1 Code?2 Code3

(047
: > Generator “G” > (0.12) (047} (042" Generator “G”
: (Neural Network) S - UE > (Neural Network)
0.19, ' ' '

\092) \019) \007)

(64,64,3)
Code 3 generated image

(0.42°
> (I\(Iaene:al:tlo: “G,;() > Man with glasses - man + woman = woman with glasses
: eural Networ

\ 0.07)

[Radford et al. (2015): UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS] K l a n Kata n fo rO O S h

Il.LE - Nice results

Face (Generation:

[Karras et al. (2018): A Style-Based Generator Architecture for Generative Adversarial Networks]

https://www.voutube.com/watch?
v=kSl JriaOumA&feature=youtu.be

Kian Katanforoosh

https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be
https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be

Il.LE - Nice results

Image Generation:

Samples from the “generated distribution’

[Zhang et al. (2017): StackGAN++] .
Kian Katanforoosh

Il.LE - Nice results

o~ /‘ 'A ;?;.;-,l'

Figure 3: Street scene image translation results. For each pair, left is input and right is the translated image.

[Liu et al. (2017): Unsupervised Image-to-Image Translation Networks] Kian Katanforoosh

Il.LE - Nice results

Input

Output

- r—

*L“

_—

R o L~
‘ -

hors¢c — zcbra

orange — apple

[Zhu, Park et al. (2017): Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] Kian Katanforoosh

Il.LE - Nice results

Goal: Convert horses to zebras on images, and vice-versa.

Data? Architecture? Cost function?

Unpaired images

Horse images Zebra images

[Zhu, Park et al. (2017): Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] Kian Katanforoosh

Il.LE - Nice results

_ =0 if x=GI(H)
Architecture? :

y=1 otherwise (x=2z)

H2/

=0 if x=G2Z)

Generator1 | o
| ———> Discriminatori

y=1 otherwise (x=h)

Generator2 y=0 if x=GI(H)

y=1 otherwise (x=2z)

r Generator1
y=0if x=G22) (H22)

y=1 otherwise (x=h)

f | ===y Discriminator1

\

Generator2

/2H

(Z2H)

[Zhu, Park et al. (2017): Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] Kian Katanforoosh

Il.LE - Nice results

Loss t0o minimize?

JPY = Elog(Dl(z(’))) : flog(l— DI(G1(H"Y)))
real i=1 mgen =1
J©D = Zlog(Dl(Gl(H(’))))
gen =1
JP2) — Zlog(D2(h(l))) : flog(l—Dz(GZ(Z(i))))
real i=1 mgen i=1
J9) = Z log(D2(G2(Z"))) fod b S T SATT
m i=1
gen

cycle 1 & l l 1 & l l
J* = —3 |GAGIH")= H” | +— 2 | G1(G2(2")-Z" |,

m

gen l:1 gen l:1

Kian Katanforoosh

Il.LE - Nice results

CycleGANSs:

Face2ramen

+ Face detection

'Shu Naritomi et al.: Face2Ramen]

'Takuya Tako: Face2Ramen using CycleGAN] .
Zhu, Park et al. (2017): Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] Kian Katanforoosh

https://www.youtube.com/watch?v=YGBzYsf61QY&feature=youtu.be

Il.E - Nice results

PiIx2PIx:

https://affinelayer.com/pixsrv/ by Christopher Hesse.

[Isola et al. (2017): Image-to-Image Translation with Conditional Adversarial Networks] Kian Katanforoosh

https://affinelayer.com/pixsrv/

Il.LE - Nice results

Human Portrait Super Resolution Using GANSs

Yujie Shu

Super-resolution

Figure 1: Input LR 32x32, SRPGGAN 8x Output 256x256, and Original HR 256x256

[Ledig et al. (2016): Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] Kian Katantoroosh

Il.LE - Nice results

Motion Retargeting video subjects : https://www.youtube.com/watch?

[Chan et al. (2018): Everybody Dance Now] Kian Katanforoosh

https://www.youtube.com/watch?v=PCBTZh41Ris

Il.E - Nice results

Other applications of GANS:

 Beaulieu-dones et al., Privacy-preserving generative deep neural
networks support clinical data sharing.

 Hwang et al., Learning Beyond Human Expertise with Generative Models
for Dental Restorations.

 Gomez et al., Unsupervised cipher cracking using discrete GANS.

 Many more...

Kian Katanforoosh

https://www.biorxiv.org/content/biorxiv/early/2017/07/05/159756.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2017/07/05/159756.full.pdf
https://arxiv.org/pdf/1804.00064.pdf
https://arxiv.org/pdf/1804.00064.pdf
https://arxiv.org/pdf/1801.04883.pdf

Announcements

For next Tuesday:

Completed modules (due at 9 45 am PST (right before lecture)):
- C2M1: Practical aspects of deep learning (slides)
- C2M2: Optimization algorithms (slides)

Quizzes (due at 9 45 am PST (right before lecture)):
- Practical aspects of deep learning

+ Optimization Algorithms

Programming Assignments (due at 9 45 am PST (right before lecture)):
- Initialization

- Regularization

- Gradient Checking

- Optimization

This Friday: TA section

Kian Katanforoosh

http://cs230.stanford.edu/files/C2M1.pdf
http://cs230.stanford.edu/files/C2M2.pdf

ll. Generative Adversarial Networks (GANS)

A. Motivation

B. G/D Game

C. Training GANS

D. Nice results

E. In terms of code

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh

Il. D. In terms of code

Build and compile the discriminator

self.discriminator =|self.build _discriminator()
self.discriminator.compile(loss="'binary_crossentropy',

optimizer=optimizer,
metrics=['accuracy'])

Build the generator

self.generator =|self.build_generator()

The generator takes nolse as input and generates 1imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)

For the combined model we will only train the generator
self.discriminator.trainable = False

The discriminator takes generated images as input and determines validity
validity = self.discriminator(img)

The combined model (stacked generator and discriminator)

Trains the generator to fool the discriminator

self.combined = Model(z, validity)
self.combined.compile(loss="binary_crossentropy', optimizer=optimizer)

[Erik Linder-Norén (Github): eriklindernoren/Keras-GAN: link]

def build discriminator(self):

model = Sequential()

model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary ()

img = Input(shape=self.img_shape)
validity = model(img)

return Model(img, validity)

Kian Katanforoosh

https://github.com/eriklindernoren
https://github.com/eriklindernoren
https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py

Il. D. In terms of code

Build and compile the discriminator
self.discriminator =
self.discriminator.compile(loss="'binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])

Build the generator
self.generator =|self.build_generator()

The generator takes nolse as input and generates 1imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)

For the combined model we will only train the generator
self.discriminator.trainable = False

The discriminator takes generated images as input and determines validity
validity = self.discriminator(img)

The combined model (stacked generator and discriminator)

Trains the generator to fool the discriminator

self.combined = Model(z, validity)
self.combined.compile(loss="binary_crossentropy', optimizer=optimizer)

[Erik Linder-Norén (Github): eriklindernoren/Keras-GAN: link]

def build_generator(self):

mode L

mode L

mode L.
mode L.
mode L.

mode L

mode L.
mode L.

mode L

mode L.
mode L.

mode L

noise
img =

return Model(noise, img)

.add(Dense(256, input_dim=self.latent_dim))

.add(LeakyReLU(alpha=0.2))

mode l.

.add(BatchNormalization(momentum=0.8))

.summary ()

= Sequential()

add(LeakyReLU(alpha=0.2))
add(BatchNormalization(momentum=0.8))
add(Dense(512))

add(BatchNormalization(momentum=0.8))
add(Dense(1024))
add(LeakyRelLU(alpha=0.2))

add(Dense(np.prod(self.img_shape), activation='tanh'))
add(Reshape(self.img_shape))

= Input(shape=(self.latent_dim,))
model(noise)

Kian Katanforoosh

https://github.com/eriklindernoren
https://github.com/eriklindernoren
https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py

Il. D. In terms of code

for epoch in range(epochs):

def train(self, epochs, batch_size=128, sample_interval=50): # Select a random batch of lmages
idx = np.random.randint(@, X_train.shapel[@], batch_size)

Load the dataset imgs = X_train[idx]

(X_train,), (_, _) = mnist.load _data()
noise = np.random.normal(@, 1, (batch_size, self.latent_dim))

Rescale -1 to 1

X _train = X_train / 127.5 - 1.

X_train = np.expand_dims(X_train, axis=3)

Generate a batch of new images
gen_imgs = self.generator.predict(noise)

Adversarial ground truths # Train the discriminator

valid = np.ones((batch_size, 1)) d_loss_real = self.discriminator.train_on_batch(imgs, valid)

fake = np.zeros((batch_size, 1)) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)

d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

noise = np.random.normal(®, 1, (batch_size, self.latent_dim))

Train the generator (to have the discriminator label samples as valid)
g_loss = self.combined.train_on_batch(noise, valid)

[Erik Linder-Norén (Github): eriklindernoren/Keras-GAN: link] Kian Katanforoosh

https://github.com/eriklindernoren
https://github.com/eriklindernoren
https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py

