
Kian Katanforoosh

CS230: Lecture 9
Deep Reinforcement Learning

Kian Katanforoosh

Kian Katanforoosh

I. Motivation
II. Recycling is good: an introduction to RL
III. Deep Q-Learning
IV. Application of Deep Q-Learning: Breakout (Atari)
V. Tips to train Deep Q-Network
VI. Advanced topics

Today’s outline

Kian Katanforoosh

I. Motivation

Human Level Control through
Deep Reinforcement Learning AlphaGo

[Silver, Schrittwieser, Simonyan et al. (2017): Mastering the game of Go without human knowledge]
[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

AlphaStar

[Vinyals et al. (2019): Grandmaster level in StarCraft II using multi-agent reinforcement learning]

Kian Katanforoosh

I. Motivation

Why RL?
• Delayed labels
• Making sequences of decisions

What is RL?
• Automatically learn to make good

sequences of decision
• Teaching by experience vs. Teaching by

example.

Examples of RL applications

Robotics AdvertisementGames

Source: https://deepmind.com/blog/
alphago-zero-learning-scratch/

How would you solve Go with classic supervised learning?
Input output class

The move of the
professional

player

issues:
- Ground truth probably wrongly defined.
- Too many states in this Game.
- We will likely not generalize.

Kian Katanforoosh

I. Motivation

Agent

Environment

st st+1

at
ot rt

st+1st at (ot, rt)Transition:

Kian Katanforoosh

I. Motivation
II. Recycling is good: an introduction to RL
III. Deep Q-Networks
IV. Application of Deep Q-Network: Breakout (Atari)
V. Tips to train Deep Q-Network
VI. Advanced topics

Today’s outline

Kian Katanforoosh

II. Recycling is good: an introduction to RL

Problem statement

START

Goal: maximize the return (rewards)

Agent’s Possible actions:
Define reward “r” in every state

+2 0 0 +1 +10

Number of states: 5

Types of states:
initial normal terminal

State 1 State 2 (initial) State 3 State 4 State 5

How to define the long-term return?

Discounted return R =
t=0

∞

∑γ trt = r0 + γ r1 + γ
2r2 + ...

Best strategy to follow if γ = 1

Additional rule: garbage
collector coming in 3min, it takes
1min to move between states

Kian Katanforoosh

II. Recycling is good: an introduction to RL

What do we want to learn?
#actions

#statesQ =

Q11
Q21
Q31
Q41
Q51

Q12
Q22
Q32
Q42
Q52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Q-table

how good is it to take
action 1 in state 2

S2

S1

S3

S2

S4

S3

S5

+2

+0

How?

+1

+0

+10

+0

Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5

Problem statement

Define reward “r” in every state

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

S1 S2 S3 S4 S5

Kian Katanforoosh

II. Recycling is good: an introduction to RL

What do we want to learn?
#actions

#statesQ =

Q11
Q21
Q31
Q41
Q51

Q12
Q22
Q32
Q42
Q52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

S2

S1

S3

S2

S4

S3

S5

+2

+0

+0

+0

+ 10

How?

+10
 (= 1 + 10 x 0.9)

Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5 how good is it to take
action 1 in state 2

Problem statement

Define reward “r” in every state

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

Q-table

S1 S2 S3 S4 S5

Kian Katanforoosh

What do we want to learn?
#actions

#statesQ =

Q11
Q21
Q31
Q41
Q51

Q12
Q22
Q32
Q42
Q52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

S2

S1

S3

S2

S4

S3

S5

+0

+0

How?

+10

+ 9
 (= 0 + 0.9 x 10)Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5 how good is it to take
action 1 in state 2

+ 10
 (= 1 + 10 x 0.9)

+2

Problem statement

Define reward “r” in every state

II. Recycling is good: an introduction to RL

Q-table

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

S1 S2 S3 S4 S5

Kian Katanforoosh

What do we want to learn?
#actions

#statesQ =

Q11
Q21
Q31
Q41
Q51

Q12
Q22
Q32
Q42
Q52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

S2

S1

S3

S2

S4

S3

S5

+2

+0

How?

+10

Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5 how good is it to take
action 1 in state 2

+ 9
 (= 0 + 0.9 x 10)

+ 9
 (= 0 + 0.9 x 10)

+ 10
 (= 1 + 10 x 0.9)

Problem statement

Define reward “r” in every state

II. Recycling is good: an introduction to RL

Q-table

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

S1 S2 S3 S4 S5

Kian Katanforoosh

What do we want to learn?
#actions

#statesQ =

Q11
Q21
Q31
Q41
Q51

Q12
Q22
Q32
Q42
Q52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

S2

S1

S3

S2

S4

S3

S5

+2

+0

How?

+10

Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5 how good is it to take
action 1 in state 2

+ 9
 (= 0 + 0.9 x 10)

+ 9
 (= 0 + 0.9 x 10)

+ 10
 (= 1 + 10 x 0.9)

+ 8.1
 (= 0 + 0.9 x 9)

Problem statement

Define reward “r” in every state

II. Recycling is good: an introduction to RL

Q-table

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

S1 S2 S3 S4 S5

Kian Katanforoosh

What do we want to learn?
#actions

#statesQ =

Q11
Q21
Q31
Q41
Q51

Q12
Q22
Q32
Q42
Q52

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

S2

S1

S3

S2

S4

S3

S5

+2

How?

+10

Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5 how good is it to take
action 1 in state 2

+ 9
 (= 0 + 0.9 x 10)

+ 9
 (= 0 + 0.9 x 10)

+ 10
 (= 1 + 10 x 0.9)

+ 8.1
 (= 0 + 0.9 x 9)

+ 8.1
 (= 0 + 0.9 x 9)

Problem statement

Define reward “r” in every state

II. Recycling is good: an introduction to RL

Q-table

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

S1 S2 S3 S4 S5

Kian Katanforoosh

What do we want to learn?

S2

S1

S3

S2

S4

S3

S5

+2

How?

+10

Assuming γ = 0.9

START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5

+ 9
 (= 0 + 0.9 x 10)

+ 9
 (= 0 + 0.9 x 10)

+ 10
 (= 1 + 10 x 0.9)

+ 8.1
 (= 0 + 0.9 x 9)

Problem statement

Define reward “r” in every state

II. Recycling is good: an introduction to RL

Discounted return R = γ trt
t=0
∑ = r0 + γ r1 + γ

2r2 + ...

S1 S2 S3 S4 S5

#actions

#statesQ =

0
2
8.1
9
0

0
9
10
10
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

how good is it to take
action 1 in state 2

Q-table

Kian Katanforoosh

Best strategy to follow if γ = 0.9

What do we want to learn?
#actions

#statesQ =

0
2
8.1
9
0

0
9
10
10
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Bellman equation
(optimality equation)

Q*(s,a) = r + γ max
a '
(Q*(s ',a '))

how good is it to take
action 1 in state 2

When state and action spaces are too
large, this method has huge memory cost Policy π (s) = argmax

a
(Q*(s,a))

Function telling us our best strategy

II. Recycling is good: an introduction to RL

Q-table
START

+2 0 0 +1 +10

State 1 State 2 (initial) State 3 State 4 State 5

Problem statement

Define reward “r” in every state

Kian Katanforoosh

What we’ve learned so far:

- Vocabulary: environment, agent, state, action, reward, total return,
discount factor.

- Q-table: matrix of entries representing “how good is it to take action a
in state s”

- Policy: function telling us what’s the best strategy to adopt

- Bellman equation satisfied by the optimal Q-table

Kian Katanforoosh

I. Motivation
II. Recycling is good: an introduction to RL
III. Deep Q-Learning
IV. Application of Deep Q-Learning: Breakout (Atari)
V. Tips to train Deep Q-Network
VI. Advanced topics

Today’s outline

Kian Katanforoosh

III. Deep Q-Learning

Main idea: find a Q-function to replace the Q-table

Neural NetworkProblem statement

START

State 1 State 2 (initial) State 3 State 4 State 5

#actions

#statesQ =

0
2
8.1
9
0

0
9
10
10
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Q-table

s =

0
1
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

a1
[1]

a2
[1]

a3
[1]

a4
[1]

a3
[2]

a1
[3]

a1
[2]

a2
[2]

a1
[3] Q(s,→)

Q(s,←)

Then compute loss, backpropagate.

How to compute the loss?

Kian Katanforoosh

s =

0
1
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

a1
[1]

a2
[1]

a3
[1]

a4
[1]

a3
[2]

a1
[3]

a1
[2]

a2
[2]

a1
[3] Q(s,→)

Q(s,←) Loss function

y = r→ + γ max
a '
(Q(s→

next ,a '))y = r← + γ max
a '
(Q(s←

next ,a '))

Target value

Immediate reward for
taking action in
state s Immediate Reward for

taking action in
state sDiscounted maximum future reward

when you are in state s←
next

Discounted maximum
future reward when
you are in state s→

next

Hold fixed for backprop Hold fixed for backprop

L = (y −Q(s,←))2

Q(s,←) >Q(s,→)Case: Q(s,←) <Q(s,→)Case:

Q*(s,a) = r + γ max
a '
(Q*(s ',a '))

[Francisco S. Melo: Convergence of Q-learning: a simple proof]

III. Deep Q-Learning

Kian Katanforoosh

s =

0
1
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

a1
[1]

a2
[1]

a3
[1]

a4
[1]

a3
[2]

a1
[3]

a1
[2]

a2
[2]

a1
[3] Q(s,→)

Q(s,←) Loss function (regression)

y = r→ + γ max
a '
(Q(s→

next ,a '))y = r← + γ max
a '
(Q(s←

next ,a '))

Target value

L = (y −Q(s,→))2

Q(s,←) >Q(s,→) Q(s,←) <Q(s,→)Case: Case:

Backpropagation Compute and update W using stochastic gradient descent∂L
∂W

III. Deep Q-Learning

Kian Katanforoosh

Recap’

DQN Implementation:

- Initialize your Q-network parameters

- Loop over episodes:

- Start from initial state s

- Loop over time-steps:

- Forward propagate s in the Q-network

- Execute action a (that has the maximum Q(s,a) output of Q-network)

- Observe reward r and next state s’

- Compute targets y by forward propagating state s’ in the Q-network, then compute loss.

- Update parameters with gradient descent

START

State 1 State 2 (initial) State 3 State 4 State 5

y = r← + γ max
a '
(Q(s←

next ,a '))

Kian Katanforoosh

I. Motivation
II. Recycling is good: an introduction to RL
III. Deep Q-Networks
IV. Application of Deep Q-Network: Breakout (Atari)
V. Tips to train Deep Q-Network
VI. Advanced topics

Today’s outline

Kian Katanforoosh

IV. Deep Q-Learning application: Breakout (Atari)

Goal: play breakout, i.e. destroy all the bricks.

input of Q-network Output of Q-network

Q(s,←)
Q(s,→)
Q(s,−)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Q-values

Demo

s =

Would that work?
[Video credits to Two minute papers: Google DeepMind's Deep Q-learning
playing Atari Breakout https://www.youtube.com/watch?v=V1eYniJ0Rnk]

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Kian Katanforoosh

Goal: play breakout, i.e. destroy all the bricks.

input of Q-network
Demo

Output of Q-network

Q(s,←)
Q(s,→)
Q(s,−)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Q-values

Preprocessing

φ(s)

s =

What is done in
preprocessing?

- Convert to grayscale
- Reduce dimensions (h,w)
- History (4 frames)[Video credits to Two minute papers: Google DeepMind's Deep Q-learning

playing Atari Breakout https://www.youtube.com/watch?v=V1eYniJ0Rnk]
[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

IV. Deep Q-Learning application: Breakout (Atari)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Kian Katanforoosh

input of Q-network

φ(s) =

Deep Q-network architecture?

CONV ReLU CONV ReLU FC (RELU) FC (LINEAR)φ(s)
Q(s,←)
Q(s,→)
Q(s,−)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

CONV ReLU

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

IV. Deep Q-Learning application: Breakout (Atari)

Kian Katanforoosh

Recap’ (+ preprocessing + terminal state)

DQN Implementation:

- Initialize your Q-network parameters

- Loop over episodes:

- Start from initial state s

- Loop over time-steps:

- Forward propagate s in the Q-network

- Execute action a (that has the maximum Q(s,a) output of Q-network)

- Observe reward r and next state s’

-

- Compute targets y by forward propagating state s’ in the Q-network, then compute loss.

- Update parameters with gradient descent

Some training challenges:
- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice

(Exploration / Exploitation tradeoff)
φ(s)

φ(s)

φ(s ')

φ(s)

φ(s ')- Use s’ to create

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Recap’ (+ preprocessing + terminal state)

DQN Implementation:

- Initialize your Q-network parameters

- Loop over episodes:

- Start from initial state s

- Loop over time-steps:

- Forward propagate s in the Q-network

- Execute action a (that has the maximum Q(s,a) output of Q-network)

- Observe reward r and next state s’

-

- Compute targets y by forward propagating state s’ in the Q-network, then compute loss.

- Update parameters with gradient descent

Some training challenges:
- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice

(Exploration / Exploitation tradeoff)
φ(s)

φ(s)

φ(s ')

φ(s)

φ(s ')- Use s’ to create

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Recap’ (+ preprocessing + terminal state)

DQN Implementation:

- Initialize your Q-network parameters

- Loop over episodes:

- Start from initial state s

- Create a boolean to detect terminal states: terminal = False

- Loop over time-steps:

- Forward propagate s in the Q-network

- Execute action a (that has the maximum Q(s,a) output of Q-network)

- Observe reward r and next state s’

- Use s’ to create

- Check if s’ is a terminal state. Compute targets y by forward propagating state s’ in the Q-network, then
compute loss.

- Update parameters with gradient descent

Some training challenges:
- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice

(Exploration / Exploitation tradeoff)φ(s)

φ(s)

φ(s ') φ(s ')

φ(s)

if terminal = False : y = r + γ max
a '
(Q(s ',a '))

if terminal = True : y = r (break)

⎧
⎨
⎪

⎩⎪

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Replay memory (D)

IV - DQN training challenges

Experience replay

Current method is to start from
initial state s and follow:

1 experience (leads to one iteration of gradient descent)

Experience Replay

E1

E2

E3

E1
E1

Training: E1 E2 E3 Training: E1 sample(E1, E2) sample(E1, E2, E3)
sample(E1, E2, E3, E4) …

E2
E3
…

E2

E3

Can be used with mini batch gradient descent

φ(s)→ a→ r→φ(s ')
φ(s ')→ a '→ r '→φ(s '')

φ(s '')→ a ''→ r ''→φ(s ''')
...

Advantages of experience replay?
[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Recap’ (+ experience replay)
DQN Implementation:

- Initialize your Q-network parameters
- Initialize replay memory D

- Loop over episodes:

- Start from initial state

- Create a boolean to detect terminal states: terminal = False

- Loop over time-steps:

- Forward propagate in the Q-network

- Execute action a (that has the maximum Q(,a) output of Q-network)

- Observe reward r and next state s’

- Use s’ to create

- Add experience to replay memory (D)

- Sample random mini-batch of transitions from D

- Check if s’ is a terminal state. Compute targets y by forward propagating state in the Q-network, then compute loss.

- Update parameters with gradient descent

φ(s)

φ(s)

φ(s ')

φ(s ')

φ(s)

(φ(s),a,r,φ(s '))

The transition
resulting from this
is added to D, and

will not necessarily
be used in this

iteration’s update!

Update using
sampled

transitions

Some training challenges:
- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice

(Exploration / Exploitation tradeoff)

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Exploration vs. Exploitation

S1

R = +0

R = +1

R = +1000

Q(S1,a1) = 0.5
Q(S1,a2) = 0.4
Q(S1,a3) = 0.3

Just after initializing the
Q-network, we get:

Initial state

S2
a1

Terminal state

S3
a2

Terminal state

S4

a3
Terminal state

Kian Katanforoosh

Exploration vs. Exploitation

S1

R = +0S2

S3

S4

R = +1

R = +1000

Q(S1,a1) = 0.5
Q(S1,a2) = 0.4
Q(S1,a3) = 0.3

a1
a2

a3

Just after initializing the
Q-network, we get:

0Initial state

Terminal state

Terminal state

Terminal state

Kian Katanforoosh

Exploration vs. Exploitation

S1

R = +0S2

S3

S4

R = +1

R = +1000

Q(S1,a1) = 0.5
Q(S1,a2) = 0.4
Q(S1,a3) = 0.3

a1
a2

a3

Just after initializing the
Q-network, we get:

0
1

Initial state

Terminal state

Terminal state

Terminal state

Kian Katanforoosh

Exploration vs. Exploitation

S1

R = +0S2

S3

S4

R = +1

R = +1000

Q(S1,a1) = 0.5
Q(S1,a2) = 0.4
Q(S1,a3) = 0.3

a1
a2

a3

Just after initializing the
Q-network, we get:

0
1

Initial state

Will never be visited, because
Q(S1,a3) < Q(S1,a2)

Terminal state

Terminal state

Terminal state

Kian Katanforoosh

Recap’ (+ epsilon greedy action)
DQN Implementation:

- Initialize your Q-network parameters
- Initialize replay memory D

- Loop over episodes:

- Start from initial state

- Create a boolean to detect terminal states: terminal = False

- Loop over time-steps:

- With probability epsilon, take random action a.
- Otherwise:

- Forward propagate in the Q-network
- Execute action a (that has the maximum Q(,a) output of Q-network).

- Observe reward r and next state s’

- Use s’ to create

- Add experience to replay memory (D)

- Sample random mini-batch of transitions from D

- Check if s’ is a terminal state. Compute targets y by forward propagating state in the Q-network, then compute loss.

- Update parameters with gradient descent

φ(s)

φ(s)

φ(s ')

φ(s ')

φ(s)

(φ(s),a,r,φ(s '))

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Overall recap’
DQN Implementation:

- Initialize your Q-network parameters
- Initialize replay memory D

- Loop over episodes:

- Start from initial state

- Create a boolean to detect terminal states: terminal = False  

- Loop over time-steps:

- With probability epsilon, take random action a.
- Otherwise:

- Forward propagate in the Q-network
- Execute action a (that has the maximum Q(,a) output of Q-network).

- Observe rewards r and next state s’

- Use s’ to create  

- Add experience to replay memory (D)

- Sample random mini-batch of transitions from D

- Check if s’ is a terminal state. Compute targets y by forward propagating state in the Q-network, then compute loss.

- Update parameters with gradient descent

φ(s)

φ(s)

φ(s ')

φ(s ')

φ(s)

(φ(s),a,r,φ(s '))

- Preprocessing
- Detect terminal state
- Experience replay
- Epsilon greedy action

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Results

[Credits: DeepMind, DQN Breakout - https://www.youtube.com/watch?v=TmPfTpjtdgg]
[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

Kian Katanforoosh

Other Atari games

Pong SeaQuest Space Invaders

[moooopan, Deep Q-Network Plays Atari 2600
Pong - https://www.youtube.com/watch?

v=p88R2_3yWPA]

[Chia-Hsuan Lee, Atari Seaquest Double
DQN Agent - https://www.youtube.com/

watch?v=NirMkC5uvWU]

[DeepMind: DQN SPACE INVADERS - https://
www.youtube.com/watch?v=W2CAghUiofY&t=2s]

[Mnih, Kavukcuoglu, Silver et al. (2015): Human Level Control through Deep Reinforcement Learning]

https://www.youtube.com/watch?v=p88R2_3yWPA
https://www.youtube.com/watch?v=p88R2_3yWPA
https://www.youtube.com/watch?v=NirMkC5uvWU
https://www.youtube.com/watch?v=NirMkC5uvWU
https://www.youtube.com/watch?v=NirMkC5uvWU
https://www.youtube.com/watch?v=W2CAghUiofY&t=2s
https://www.youtube.com/watch?v=W2CAghUiofY&t=2s

Kian Katanforoosh

Difference between with and without human knowledge

Imitation learning

[Ho et al. (2016): Generative Adversarial Imitation Learning]

[Source: Bellemare et al. (2016): Unifying Count-Based
Exploration and Intrinsic Motivation]

Kian Katanforoosh

I. Motivation
II. Recycling is good: an introduction to RL
III. Deep Q-Networks
IV. Application of Deep Q-Network: Breakout (Atari)
V. Tips to train Deep Q-Network
VI. Advanced topics

Today’s outline

Kian Katanforoosh

VI - Advanced topics

Policy Gradient Methods

[Open AI Blog]

[Schulman et al. (2017): Proximal Policy Optimization]
[Schulman et al. (2017): Trust Region Policy Optimization]

PPO TRPO

[TRPO]

https://blog.openai.com/openai-baselines-ppo/
https://sites.google.com/site/trpopaper/

Kian Katanforoosh

VI - Advanced topics Competitive self-play

[OpenAI Blog: Competitive self-play]
[Bansal et al. (2017): Emergent Complexity via multi-agent competition]

Kian Katanforoosh

VI - Advanced topics

Deep Mind: Alpha Star

[OpenAI Blog Five] AlphaStar: Mastering the Real-Time Strategy Game StarCraft

Open AI Five

Kian Katanforoosh

VI - Advanced topics

Alpha Go

[DeepMind Blog]
[Silver, Schrittwieser, Simonyan et al. (2017): Mastering the game of Go without human knowledge]

https://deepmind.com/blog/alphago-zero-learning-scratch/

Kian Katanforoosh

Announcements

This week is the project week!

Tips: If you’re interested in testing your ML/DL skills or preparing for job interviews
in AI, you can take the Workera assessment.

Note: Please monitor your AWS credits and idle instances to ensure you’re within
your budget!

https://workera.ai/for-individuals/

